Historically, cellulose has been promoted as the only choice for dense pack applications. However, CertainTeed OPTIMA® loose-fill fiber glass insulation provides the same reductions in air permeance as cellulose while delivering a number of other significant benefits.

OPTIMA offers many additional benefits when compared to cellulose

- Fewer packages needed – less labor, handling and jobsite trash
- Higher R-value per inch (R-25 in 2 x 6); higher wall R-values
- EPA and BPI approved for weatherization programs and retrofit applications
- GREENGUARD® Gold certified for indoor air quality
- High recycled glass content – exceeds EPA’s Recovered Materials Advisory Notice
- Won’t absorb moisture or support mold growth
- Naturally noncombustible; no fire-retardant chemicals added
- Doesn’t settle
- Less dust
- Faster flowing – helps save time on the job

36% FEWER BAGS at a 19% increased R-value*

Dense Packing with OPTIMA

OPTIMA = R-25 in 2 x 6 wall @ 2.3 lbs/ft³

Cellulose = R-21 in 2 x 6 wall @ 3.5 lbs/ft³

*Based on a 30 lb bag of cellulose
Dense Packing Installation Guidelines for OPTIMA®

<table>
<thead>
<tr>
<th>OPTIMA Dense Pack Coverage Chart</th>
<th>31 lb Bag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Type</td>
<td>Cavity Depth</td>
</tr>
<tr>
<td>2 x 4</td>
<td>3.5</td>
</tr>
<tr>
<td>2 x 4</td>
<td>4</td>
</tr>
<tr>
<td>2 x 6</td>
<td>5.5</td>
</tr>
<tr>
<td>2 x 8</td>
<td>7.25</td>
</tr>
<tr>
<td>2 x 10</td>
<td>9.25</td>
</tr>
</tbody>
</table>

For dense packing walls to an air permeance of 3.5 cfm/ft² at 50 pascals pressure differential, use a minimum density of at least 2.3 PCF.

Blowing Machine: Required – fiber agitation and conditioning with air pressure control
1. Machine speed – per manufacturer’s recommendation
2. Slide gate – start with 1/3 to 1/2 open
3. Air pressure – 2.0 to 2.4 psi (55" to 66" of H₂O) (machine back pressure end of insert tube)
4. Transmission (if applicable) – 2nd gear

Blowing Hose:
1. Internally corrugated hose required (except for wall insert tube)
2. Smooth transition reducers
3. 10’ cavity insert tube:
 a. 1¼" ID w/ 1/8" wall thickness clear vinyl/plastic tube
 b. 1½" ID w/ 1½" wall thickness for larger cavities (2 x 6 or larger)
4. c. 1½" or 2" blow hose inserted into floor/ceiling cavities or large sidewall cavities from the attic

Blowing Hose Assembly

<table>
<thead>
<tr>
<th>Machine Outlet Dia.</th>
<th>1st Section</th>
<th>Reduce to</th>
<th>2nd Section</th>
<th>Reduce to</th>
<th>3rd Section</th>
<th>Reduce to</th>
<th>4th Section</th>
<th>Reduce to</th>
<th>5th Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4"</td>
<td>4" x 0 - 25′</td>
<td>3½"</td>
<td>3½" x 50′</td>
<td>Follow 3½" Machine Outlet Set Up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3½"</td>
<td>3½" x 0 - 25′</td>
<td>3"</td>
<td>3" x 50′</td>
<td>Follow 3" Machine Outlet Set Up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td>3" x 50′ min.</td>
<td>2½"</td>
<td>2½" x 50′</td>
<td>2"</td>
<td>2" x 50′</td>
<td>1½"</td>
<td>1½" x 10 - 25′</td>
<td>Insert Tube</td>
<td>10′</td>
</tr>
<tr>
<td>2½"</td>
<td>2½" x 100′ min.</td>
<td>2"</td>
<td>2" x 50′</td>
<td>1½"</td>
<td>1½" x 10 - 25′</td>
<td>Insert Tube</td>
<td>10′</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Hose length combination to be a minimum of 150’

Techniques:
1. Preferred – 1 hole with tube inserted filling both upwards and downwards until the cavity is filled
2. Alternative – 2 holes with tube inserted filling both upwards and downwards at each hole location until cavity is filled

NOTE: See machine manufacturer recommendations for hose length. For mid-size to large machines, 150’ minimum is typical. Please ensure you are in compliance with applicable OSHA and EPA regulations on all job sites.